Cosmic Optical Background: The View from Pioneer 10/11

Yoshiki Matsuoka¹
Nobuyuki Ienaka², Kimiaki Kawara², Shinki Oyabu¹
(¹Nagoya University, ²University of Tokyo)

COB: The View from Pioneer 10/11

- Cosmic optical background (COB) = Optical component of the extragalactic background light (EBL)
- UV and optical light of all radiation sources in the Universe (↔ integrated brightness of galaxies)

Yoshiki Matsuoka

FIRST STARS IV

Bernstein 07

Dominguez et al. 2011
NASA’s Pioneer 10/11 spacecrafts
• “the first to be sent to the outer solar system and the first to investigate the planet Jupiter, after which followed an escape trajectory from the solar system”
• Launched: May 1972 (Pioneer 10)
 Apr 1973 (Pioneer 11)
• Comm. Stop: Jan 2003 (P10; D = 82 AU)
 Nov 1995 (P11; D = 45 AU)
• Scientific instruments:
magnetometer; plasma analyzer; charged particle detector; ionizing detector; non-imaging telescopes; sealed pressurized cells of Ar and N gas; UV photometer: IR radiometer; imaging photopolarimeter
Imaging Photopolarimeter (IPP)
- 2.5-cm Maksutov telescope
- Wollaston prism
- multilayer filters
- dual-channel Bendix channeltrons

- measures two orthogonal polarization components in the two wave bands (blue; 3900 – 5000 Å, red; 5950 – 7200 Å)

- Instantaneous FOV: 2.29° x 2.29°
- takes 64 exposures per one spacecraft spin (12.5 sec)
 → **effective FOV**: 2.29° x (2.29° + 5.625° sin L) ~ 10 deg²

- L: “look angle” between the IPP pointing and spacecraft spin axis
- 1 data cycle = 10 rolls (8 for sky measurements, 1 for photometric calibration, 1 for dark-current and offset measurement)
• **ZL and COB measurements by the IPP**

 - Hanner et al. (1974)
 - monitored the sky brightness during the cruise phase of the Pioneer 10 at the heliocentric distances 2.4 – 4.8 AU.
 - \(ZL @ 2.4 \text{ AU} < 10\% \ ZL @ 1 \text{ AU} \)
 - \(ZL \text{ undetectable} @ > 3.3 \text{ AU} \)

• **Toller (1983)**

 - attempted to detect the COB in the Pioneer 10 IPP data taken at the heliocentric distances > 3.3 AU (i.e., outside the ZL clouds)
 - \(\text{COB} < 4.5 \times 10^{-9} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ sr}^{-1} \text{ Å}^{-1} \text{ at 4400 Å} \)
 - … comparable to the HST results by Bernstein et al. (2002-2007)
 - BUT the starlight subtraction is the fatal problem in his analysis.
<table>
<thead>
<tr>
<th>spacecraft</th>
<th>date</th>
<th>R (AU)</th>
<th>all #</th>
<th>good Q</th>
<th>corrupt</th>
<th>scatter. sunlight</th>
<th>abnorm. (global)</th>
<th>abnorm. (local)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pio 10</td>
<td>354/'72</td>
<td>3.26</td>
<td>5696</td>
<td>60 %</td>
<td>25 %</td>
<td>5 %</td>
<td>7 %</td>
<td>3 %</td>
</tr>
<tr>
<td>Pio 10</td>
<td>093/'73</td>
<td>3.92</td>
<td>1344</td>
<td>75 %</td>
<td>5 %</td>
<td>0 %</td>
<td>14 %</td>
<td>6 %</td>
</tr>
<tr>
<td>Pio 10</td>
<td>149/'73</td>
<td>4.22</td>
<td>5504</td>
<td>61 %</td>
<td>19 %</td>
<td>10 %</td>
<td>5 %</td>
<td>6 %</td>
</tr>
<tr>
<td>Pio 10</td>
<td>216/'73</td>
<td>4.54</td>
<td>2816</td>
<td>51 %</td>
<td>3 %</td>
<td>0 %</td>
<td>2 %</td>
<td>45 %</td>
</tr>
<tr>
<td>Pio 10</td>
<td>237/'73</td>
<td>4.64</td>
<td>5312</td>
<td>57 %</td>
<td>24 %</td>
<td>5 %</td>
<td>12 %</td>
<td>3 %</td>
</tr>
<tr>
<td>Pio 10</td>
<td>279/'73</td>
<td>4.81</td>
<td>5248</td>
<td>57 %</td>
<td>21 %</td>
<td>8 %</td>
<td>10 %</td>
<td>4 %</td>
</tr>
<tr>
<td>Pio 10</td>
<td>021/'74</td>
<td>5.08</td>
<td>5504</td>
<td>59 %</td>
<td>27 %</td>
<td>4 %</td>
<td>6 %</td>
<td>4 %</td>
</tr>
<tr>
<td>Pio 10</td>
<td>068/'74</td>
<td>5.15</td>
<td>5376</td>
<td>67 %</td>
<td>29 %</td>
<td>1 %</td>
<td>1 %</td>
<td>2 %</td>
</tr>
<tr>
<td>Pio 11</td>
<td>057/'74</td>
<td>3.50</td>
<td>4544</td>
<td>73 %</td>
<td>11 %</td>
<td>1 %</td>
<td>10 %</td>
<td>4 %</td>
</tr>
<tr>
<td>Pio 11</td>
<td>106/'74</td>
<td>3.81</td>
<td>4672</td>
<td>74 %</td>
<td>5 %</td>
<td>6 %</td>
<td>10 %</td>
<td>4 %</td>
</tr>
<tr>
<td>Pio 11</td>
<td>148/'74</td>
<td>4.06</td>
<td>4672</td>
<td>77 %</td>
<td>3 %</td>
<td>9 %</td>
<td>9 %</td>
<td>2 %</td>
</tr>
<tr>
<td>Pio 11</td>
<td>178/'74</td>
<td>4.22</td>
<td>4608</td>
<td>73 %</td>
<td>3 %</td>
<td>9 %</td>
<td>11 %</td>
<td>4 %</td>
</tr>
<tr>
<td>Pio 11</td>
<td>236/'74</td>
<td>4.51</td>
<td>4544</td>
<td>82 %</td>
<td>10 %</td>
<td>3 %</td>
<td>1 %</td>
<td>5 %</td>
</tr>
<tr>
<td>Pio 11</td>
<td>267/'74</td>
<td>4.66</td>
<td>4416</td>
<td>71 %</td>
<td>9 %</td>
<td>3 %</td>
<td>6 %</td>
<td>12 %</td>
</tr>
</tbody>
</table>
Quality Assessment

Comparison between data subgroups (spacecraft, distance to the Sun, ...)

Comparison between two polarization components

Comparison of differential brightness: IPP measured vs. stellar magnitudes
• IPP Blue-band brightness maps (north/south Galactic hemispheres at \(|b| > 35^\circ\))
• IPP Red-band brightness map (north/south Galactic hemispheres at $|b| > 35^\circ$)
Contribution of faint stars
- Bright \(m_V < 6.5 \) stars in the Yale Bright Star Catalog and the USNO Photoelectric Catalog have already been subtracted.

Fainter stars... all-sky catalogs:
- Tycho-2 Catalog (6 – 10 mag),
- GSC-II Catalog (9 – 20 mag) and Galactic star-count model:
- TRILEGAL (> 20 mag) are used to derive the starlight contributing to each IPP FOV

“Diffuse emission map”
COB: The View from Pioneer 10/11

- Final foreground component: Diffuse Galactic Light
- "Since the DGL is mostly the scattered starlight by the interstellar dust, its brightness correlate with far-IR brightness which traces the thermal emission of dust heated by the starlight."

Yoshiki Matsuoka

FIRST STARS IV

\[
\begin{align*}
S_{\text{IPP}}^{\text{diffuse}} & = S_{\text{IPP}} - S_{\text{IPP}}^s \\
& = S_{\text{DGL}} + S_{\text{COB}} \\
& = a_{\text{DGL}} (S_{100\mu m})
\end{align*}
\]
COB: The View from Pioneer 10/11

• **DGL subtraction**
 IPP diffuse emission map at $|b| > 35^\circ$
 \[\downarrow \]
 IRAS/DIRBE 100 μm emission map (Schelgel et al. 1998)
 - Derived DGL/100 μm brightness ratios are in good agreement with the previous measurements.

• **Residual COB**
 - 7.9 ± 4.0 nW m$^{-2}$ sr$^{-1}$ at Blue band
 - 7.7 ± 5.8 nW m$^{-2}$ sr$^{-1}$ at Red band
 (\(I_{\text{CIB}} = 0.78 \pm 0.21\) MJy sr$^{-1}$ at 100μm ; Lagache et al. 2000)
Dominguez et al. 2011

this work

\[\lambda_{\lambda} \text{[nW m}^{-2} \text{sr}^{-1}] \]

\[\lambda \text{[\mu m]} \]

Yoshiki Matsuoka

FIRST STARS IV
Summary

- We have re-analyzed the all-sky imaging data taken by IPPs on board Pioneer 10/11 spacecrafts.
- The new constraints on the optical EBL (COB) are obtained, which are
 - $7.9 \pm 4.0 \text{ nW m}^{-2} \text{ sr}^{-1}$
 - at $0.39 - 0.50 \mu\text{m}$,
 - $7.7 \pm 5.8 \text{ nW m}^{-2} \text{ sr}^{-1}$
 - at $0.60 - 0.72 \mu\text{m}$.
- The derived COB is consistent with the integrated brightness of galaxies in the Hubble deep field.