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Observations of extremely metal-poor (EMP) stars

90th percentile

Median

10th percentile

data from SAGA database 
Suda et al 2008, 2017

log(12C/13C)

Chemical composition (abundances) of stars with [Fe/H] < -3 

Diverse chemical compositions

[ ]  : in log scale, relatively to the Sun
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What kind of massive star models 

can account for the chemical composition  

of (extremely) metal-poor stars ? 



What is the nature of the first massive stars ?
(list is not complete)

• Rotation + faint SN 

• Mixing & Fallback + faint SN

• Normal SN (15 Mo) + faint SN with fallback (35 Mo)

• Jet-induced SN from 25 - 40 Pop. III star

• Rotating 15-40 Mo Pop. III

• Rotation + late mixing + faint SN

• Weak SN from a 60 Mo Pop. III

Joggerst+2010

Keller+2014, model from Joggerst+2009

Limongi+2003

Maeda & Nomoto 2003, Tominaga 2009

Umeda & Nomoto 2003, 2005, Iwamoto+2005, Ito+2013, 
Tominaga+2007, 2014, Kobayashi+2014, Ishigaki+2014

Heger & Woosley 2010.  Also Frebel+2015, Placco+2015, 2016, Chen+2017

Choplin+2017

• Massive metal-free stars of :

Takahashi+2014, Choplin+2019

• (Fast) rotating stars Meynet+2006, Hirschi 2007, Cescutti+2013, Maeder+2015, Choplin+2016

• Convective shell interactions Banerjee+2018, Clarkson+2018

—> Deduced from (some) EMP stars
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Rotating massive stars

1 x 10-3

2 x 10-3

3 x 10-3

Observation of 496 nearby 
massive (OB) stars 
Huang & Gies (2006)
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Rotating massive stars

1 x 10-3

2 x 10-3

3 x 10-3

Observation of 496 nearby 
massive (OB) stars 
Huang & Gies (2006)

Surface and  
internal effects
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• Mechanical mass loss 
—> when gravity = centrifugal effect 

Mass loss

6

Surface effects of rotation (massive stars)



• Mechanical mass loss 
—> when gravity = centrifugal effect 

• Radiatively driven stellar winds 
—> anisotropies => polar + equatorial ejections 

—> surface enrichments

(Owocki 1996, Maeder+1999, 2000)

(Hirschi 2007)C, N, O…

Mass loss
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• Surface  

  deformation

De Souza et al. (2003) 
Carfiofi et al. (2008)

Ekstrom (2008)

Roche model

—> Req / Rp ~ 1.5 
—> at critical velocity

Achernar, ~10 M⊙ 

from interferometry :

• Mechanical mass loss 
—> when gravity = centrifugal effect 

• Radiatively driven stellar winds 
—> anisotropies => polar + equatorial ejections 

—> surface enrichments

(Owocki 1996, Maeder+1999, 2000)

(Hirschi 2007)C, N, O…

Mass loss
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Surface effects of rotation (massive stars)



•Meridional circulation •Shear mixing(or Eddington–Sweet 
circulation)

Brueggen+2001
Maeder+2000

Internal effects of rotation (massive stars)

• Transport of angular momentum  
• Transport of chemical elements 
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•Meridional circulation •Shear mixing(or Eddington–Sweet 
circulation)

Brueggen+2001
Maeder+2000

Zahn (1992), Maeder book (2008), …

• Transport of angular momentum  
• Transport of chemical elements 

Dv

Dh >> Dv

strong horizontal turbulence  

=> Ω constant on isobars  

=> ~ Ω(r) 

=> shellular rotation (1D approx.)

Full life/scale of stars 
—> only in 1D…

𝝉 ~ 105 years 𝝉 ~ 105 years
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•Meridional circulation •Shear mixing(or Eddington–Sweet 
circulation)

Brueggen+2001
Maeder+2000

Zahn (1992), Maeder book (2008), …

• Transport of angular momentum  
• Transport of chemical elements 

advective + diffusive equation
Dv

Dh >> Dv

Full life/scale of stars 
—> only in 1D…

diffusive equation

strong horizontal turbulence  

=> Ω constant on isobars  

=> ~ Ω(r) 

=> shellular rotation (1D approx.)

𝝉 ~ 105 years 𝝉 ~ 105 years
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•Meridional circulation •Shear mixing(or Eddington–Sweet 
circulation)

Brueggen+2001
Maeder+2000

𝝉 ~ 105 years 𝝉 ~ 105 years

Zahn (1992), Maeder book (2008), …

• Transport of angular momentum  
• Transport of chemical elements 

advective + diffusive equation

scales  

with ~ dΩ / dr
scales  

with ~ Ω

Dv

Dh >> Dv

Full life/scale of stars 
—> only in 1D…

diffusive equation

strong horizontal turbulence  

=> Ω constant on isobars  

=> ~ Ω(r) 

=> shellular rotation (1D approx.)
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Stellar evolution with rotation
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vs.

What happens  
at low/zero metallicity?

—> CNO cycle in the core
—> N / C increases in the core
—> rotational mixing
—> N / C increases at the surface
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Nucleosynthesis in rotating massive stars

No rotation Rotation (vini ~ 600 km/s)

: convective zones

20 M   at the end of evolution (pre-SN)☉

Effect of rotation on nucleosynthesis:
e.g. Meynet+2002, Ekstrom+ 2008, 
      Pignatari+2008, Takahashi+2014, 
      Frischknecht+2016, Choplin+2018, 
      Chieffi+2018, Banerjee+2019…

Rotation => Nitrogen (mixing between H- and He-burning regions)

Z = 10-5

9

[Fe/H] ~ -4
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      Chieffi+2018, Banerjee+2019…

Rotation => Nitrogen (mixing between H- and He-burning regions)

Z = 10-5

9

[Fe/H] ~ -4



Yields of  
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Yields of  
   H+He layers

H
He

Core Mcut ~ 4 - 5 M☉

Z=0 
x 106

Rotating massive stars yields (assuming explosion  
with strong fallback)

Z = 10-5

20 M  ☉ vini [km s-1]

Rotation boosts the
slow neutron 
capture-process

(no s-process)

• Trans-Fe yields boosted by rotation

but strongly depend on metallicity

11

[Fe/H] ~ -4



no rot.

88Sr (x100)

138Ba

208Pb (/100)

mid. rot

Rotating massive stars yields
Effect of initial mass + rotation on trans-Fe elements yields

Choplin et al. (2018)

Z = 10-3

12

[Fe/H] ~ -2



no rot.

88Sr (x100)

138Ba

208Pb (/100)

mid. rot

Rotating massive stars yields

Choplin et al. (2018)

Effect of rotation is more important 
for Mini < 60 M☉

Effect of initial mass + rotation on trans-Fe elements yields
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no rot.

88Sr (x100)

138Ba

208Pb (/100)

mid. rot

faster rot.

Rotating massive stars yields

Choplin et al. (2018)

Effect of initial mass + rotation on trans-Fe elements yields

Effect of rotation is more important 
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no rot.

88Sr (x100)

138Ba

208Pb (/100)

mid. rot

faster rot.

Rotating massive stars yields

Choplin et al. (2018)

Effect of initial mass + rotation on trans-Fe elements yields

Effect of rotation is more important 
for Mini < 60 M☉

Z = 10-3

Ba, (La, … Eu) yields boosted for high rot. (+ not too low Z)

12

[Fe/H] ~ -2



Chemical signatures of (fast) rotating massive stars  

in metal-poor stars



Signature of fast rotating massive stars in metal-poor stars?

Fast rot. 25 MoMid rot. 25 Mo

No rot. 25 Mo

HE0336+0113  

CS29528-028 

Abundances from 

Aoki et al. 2007,  

Allen et al. 2012  

Abundances from  

Cohen 2006, 2013 

e.g. Choplin+2017, 

Banerjee+2019

Fast rot. 40 Mo

Fast rot. 40 Mo
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Fast rot. 25 MoMid rot. 25 Mo

No rot. 25 Mo

HE0336+0113  

CS29528-028 

Abundances from 

Aoki et al. 2007,  

Allen et al. 2012  

Abundances from  

Cohen 2006, 2013 

e.g. Choplin+2017, 

Banerjee+2019

Smallest chi2 given  
by a fast rot. 40 M   ☉

Signature of fast rotating massive stars in metal-poor stars?

Fast rot. 40 Mo

Fast rot. 40 Mo
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Systematic comparison : rotating massive stars vs. EMP stars

• 272 EMP with -4 < [Fe/H] < -3  
• Analysis of light elements (C - Al) 
• Evolutionnary effects in EMP => corrections

Placco et al. (2014)(e.g. dredge up)

Choplin, Tominaga & Ishigaki (2019)

272 observed EMP stars

14



• 20 M   ,  [Fe/H] = -3.8 
• 8 initial rotations 
• Explo. with strong fallback

Systematic comparison : rotating massive stars vs. EMP stars

Placco et al. (2014)(e.g. dredge up)

Choplin, Tominaga & Ishigaki (2019)

272 observed EMP stars massive stars models

☉
• 272 EMP with -4 < [Fe/H] < -3  
• Analysis of light elements (C - Al) 
• Evolutionnary effects in EMP => corrections
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Guessing the velocity of early massive sars from EMP stars

Huang+2006
Velocity of the preferred 
massive stars models

(Mean velocity during MS)

Velocity of 496 nearby  
 massive (OB) stars

more fast rotators  
than in the  

present-day Universe

Choplin, Tominaga & Ishigaki (2019)

~ solar metallicity

very low metallicity 

Suggests numerous 
fast rotating massive stars  

in the early Universe
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Summary

• Rotation in low/zero metallicity massive stars => light / trans-Fe elements overproduced

• Uncertainties. Affect both models and abundances of EMP stars

• NLTE,  
• 3D effects

• Convection, 
• Rotation 

- Different prescriptions 
- Additional mixing? 
- … 

• …

e.g. Norris & Yong (2019)

• Limiting assumptions
Caution required because of :

• Velocity distribution of best massive star models => numerous fast rotating 

massive stars in the early Universe ?
—> Impact on reionization, light from high redshift galaxies, GRBs…?

• 20 M   with various rotations + strong fallback => adequate for ~70% of C-rich EMP

e.g. Eggenberger (2017)…

☉

• Metal-poor stars —> window on first massive stars
—> mixing processes (mixing & fallback, rotation, shell mixing…)

—> signature in some EMP(-s) stars
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