超大質量星形成過程における 星周円盤の進化

松木場 亮喜 (東北大学)

Tohoku University

Outline

1. Introduction

2. Model

3. Result

4. Summary and discussion

1. Introduction

Supermassive Black Holes (SMBHs)

The origin of those BHs is still a mystery.

What is the formation scenario of high-z massive BHs?

Formation scenarios of seed BHs

Volonteri 12

Thermal evolution of SMS formation

H₂ formation is suppressed by FUV radiation.

- Photodissociation
 - $H_2 + \gamma \rightarrow H_2^* \rightarrow 2H$
- Photodetachment

 $H^- + \gamma \rightarrow H + e$

$$\dot{M} \sim \frac{M_{\rm J}}{t_{\rm ff}} \sim 0.1 \ M_{\odot} \ {\rm yr}^{-1} \left(\frac{T}{10^4 \ {\rm K}}\right)^{3/2}$$

High accretion rate

- ✓ Stellar mass can reach 10⁵ M_{sun} within its lifetime.
- ✓ Protostar becomes "supergiant". Hosokawa+12, 13

Stability of the steady accretion disk

✓ Disk structure

$$Q = \frac{c_{\rm s}\Omega}{\pi G\Sigma} = 1$$

$$\Sigma = \frac{c_{\rm s}\Omega}{\pi G}$$

Fragmentation condition

$$\alpha = \frac{\nu \Sigma}{c_{\rm s}^2} > 1$$

When the accretion rate > 0.1 Msun yr-1, the disk becomes gravitationally unstable and fragments.

The accretion flow has time variation.

Motivation

If the accretion rate has time variation,

stellar radius decreases and the effective temperature rises.

Ionization feedback becomes efficient.

The length of time that accretion rate falls below $4x10^{-2}$ M_{sun} yr⁻¹.

<u>is important.</u> Sakurai+15

> We should investigate the time evolution of the accretion rate.

Previous work Sakurai et al. (2016)

They used barotropic relation as EOS,

but gravitational instability depends on the temperature.

In this work, we follow the disk formation process with detailed thermal and chemical treatments.

2. Model

Calculation model

2D simulation, face-on

- Sink cell radius $r_{\rm sink} = 300$ au
- Chemistry

H, H₂, H⁺, e

• Thermal

heating : viscous, compression, stellar radiation

cooling : H₂ line, continuum, Ly α , chemical cooling

• Central stellar radiation

Lstar=LEdd, Teff=5000 K Hosokawa+12

Initial condition

Chon et al. (2016)

They identified two direct collapse cloud from the cosmological simulation.

Two dimensionalization

- Core mass
 Fil: 4.6x10⁴ M_{sun}
 Sph: 5.2x10⁴ M_{sun}
- (Thermal energy) / (grav. energy) $\alpha = 0.24$ (Fil), $\alpha = 0.30$ (Sph)
- (rotation energy) / (grav. energy) $\beta = 2.5 \times 10^{-2}$ (Fil), $\beta = 3.6 \times 10^{-2}$ (Sph)

3. Result

Time evolution of gas density

Spatial distributions

Gravitational instability of the disk

Toomre Q parameter

$$Q = \frac{c_{\rm s}\Omega}{\pi G\Sigma}$$
 (> 1 stable, < 1 unstable)

Q~1 at 400 au < r < 800au

Spiral arms and fragments are formed by gravitational instability.

4. Summary and discussion

Time evolution of accretion rate

spherical : Accretion rate is always greater than the critical value M_{crit}.

filamentary : Accretion rate becomes less than Mcrit.

Surface KH time
$$t_{\rm KH,surf} \sim 10^3 \text{ yr} \left(\frac{M_*}{500 \text{ M}_{\odot}}\right)^{1/2}$$
 Sakurai+15

 $t_{\rm KH,surf} = 6300 \text{ yr}$ when 15000 M_{sun}

Ionization feedback may affect stellar evolution.

Difference from the barotropic model

The temperature at the disk is lower than in the case of barotropic.

The time variation of accretion rate becomes strenuous due to the disk fragmentation.

More difficult to form SMS

Summary

We followed the SMS formation process using hydrodynamical simulation with detailed thermal and chemical treatments.

- ✓ The formed disks are gravitationally unstable.
- Spherical : The accretion rate is always greater than the critical value.
 Filamentary : The accretion rate becomes less than M_{crit} for 3000 yr.
 Ionization feedback may affect the stellar evolution.

How massive can formed seed black holes be?

Future work

- \checkmark We should consider the stellar evolution and the effect of ionization.
- ✓ What about other initial conditions?