

Understanding Galaxy Evolution through Machine Learning

First Stars and First Galaxies Workshop 2019 @ Nagoya U

Suchetha Cooray

Collaborators:

Tsutomu T. Takeuchi (Nagoya U.), Shuntaro Yoshida (Nagoya U.), Kai Kono (Nagoya U.)

Formation and Evolution of Galaxies

Formation and Evolution of Galaxies

Final Aim of Galaxy Evolution Studies

The theoretical model to explain galaxy evolution would look like this

 $SFR(t) = f_1(SFR, M_*, M_{mol}, M_{HI}, M_{dust}, M_{halo}, \delta_{gal}, \dots)$ $M_*(t) = f_2(SFR, M_*, M_{mol}, M_{HI}, M_{dust}, M_{halo}, \delta_{gal}, \dots)$ $M_{mol}(t) = f_3(SFR, M_*, M_{mol}, M_{HI}, M_{dust}, M_{halo}, \delta_{gal}, \dots)$ $M_{HI}(t) = f_4(SFR, M_*, M_{mol}, M_{HI}, M_{dust}, M_{halo}, \delta_{gal}, \dots)$ $M_{dust}(t) = f_5(SFR, M_*, M_{mol}, M_{HI}, M_{dust}, M_{halo}, \delta_{gal}, \dots)$ $M_{halo}(t) = f_6(SFR, M_*, M_{mol}, M_{HI}, M_{dust}, M_{halo}, \delta_{gal}, \dots)$ $\delta_{gal}(t) = f_7(SFR, M_*, M_{mol}, M_{HI}, M_{dust}, M_{halo}, \delta_{gal}, \dots)$

Clearly, it is a very complicated problem!

It is high time to define the evolution of galaxies with a more objective point of view

Credit: T. Takeuchi

Conventional Method (Derived Physical Quantities)

Grootes et al. 2013

Traditional Methods (Color-Magnitude Diagrams)

Blanton (2006)

Arnouts et al. (2007)

These plots show clear bimodality / multimodality

Do they have a physical meaning?

Traditional Methods (Color-Magnitude Diagrams)

Redder Galaxies: Red Sequence, Bluer galaxies: Blue Cloud, Boundary: Green Valley

Potential Problems with Color Based Methods

Colors are basically ratios of two luminosities

⇒ Selection effect is always too entangled and messy

⇒ Completeness test is almost impossible in a simple way

Suggestion: forget about colors!

Credit: T. Takeuchi

Question 1 Can we find intrinsic groups of galaxies without selection effects?

Multidimensional Luminosity Space

Instead of colors, can we just use the distribution of galaxies in a multidimensional luminosity (absolute magnitude) space?

If we have a bimodality in color-color space, we must have equivalent peaks in the multidimensional luminosity space

Credit: T. Takeuchi

Multidimensional Luminosity Space

Instead of colors, can we just use the distribution of galaxies in a multidimensional luminosity (absolute magnitude) space?

If we have a bimodality in color-color space, we must have equivalent peaks in the multidimensional luminosity space

The boundaries can be automatically defined by a machine-learning type method

Advantage of this idea is that we simply deal with the selection at each band, not as an entangled multiple selection.

Credit: T. Takeuchi

RCSED

- Reference Catalog of galaxy Spectral Energy Distributions (RCSED) (Chilingarian et al. 2016)
- Catalog of galaxies produced as join between GALEX, SDSS, and UKIDSS catalogs, and processed with state-of-the-art spectral analysis methods
- Covers approximately 25% of the sky and contains kcorrected ultraviolet-to-near-infrared photometry (11 bands of FUV, NUV, u, g, r, i, z, Y, J, H, K) of some 1 million galaxies, as well as some of their physical properties

Classification in Luminosity Space

Generate a subsample with all 11 rest-frame magnitudes (FUV, NUV, u, g, r, i, z, Y, J, H, K) -> ~800,000 galaxies

=> Find a volume limited sample that is representative of the whole galaxy sample -> ~30,000 galaxies

Can you then classify these galaxies by intuition?

Credit: T. Takeuchi

Unsupervised Machine Learning of Galaxy Groups

- Fisher Expectation-Maximization (FisherEM) algorithm (Bouveryron & Brunet 2012)
- Subspace clustering method for highdimensional data.
- Based on the Gaussian Mixture
 Model (GMM) and estimates both
 the discriminative subspace and the
 parameters of the mixture model

Projected clusters onto estimated latent discriminative sub-space at certain iterations

Machine Learnt Galaxy Classes

Machine Learnt Galaxy Classes

FisherEM $< \delta$ is so smart that he learnt about these groups all by himself!

The power of unsupervised machine learning algorithms!

Machine Learnt Galaxy Classes

Galaxy Manifold?

Studies have claimed a smooth relation of galaxies in the 3D colour–colour–magnitude space smoothly continuing from the 'blue cloud' to the 'red sequence' (e.g. Chilingarian et al. 2012)

Chilingarian et al. (2012)

Suggests a low dimensional space existing within a higher dimensional space (**Manifold**)

What is the Best Representation of the Manifold?

If the manifold is 2D (surface), only two parameters are sufficient to fully describe it

The parameters that best describes the manifold will be a combination of the parameters in the higher dimensional space

However, we mostly only care about magnitudes and colors...

Question 2

Can we find the magnitudes or colors that best describes a galaxy in the manifold?

Feature Selection

Can we use a machine learning technique to identify which magnitudes/colors (features) best represent the manifold?

Yes! We just need to ask the right question...

Random Forests for Feature Selection

Random Forests or random decision

forests are clustering algorithms that generates random decision trees based on the given features

- Many of such trees produce a random forest
- By providing the answer (class membership), the random forest will
 "learn" the important features

Feature Selection for Galaxy Manifold

Input all the magnitudes Features ranked based **Random Forest** and colors with class info on importance **Most Important Features Correlation Heat Map** kcorrected_y 1.0 My 1.0 kcorrected r M_{NUV} fuv - h Feature Importance 0.8 0.8 fuv - i Mu nuv - k Correlation 9.0 0.6 nuv - g tuv - nuv g - r fuv - u Z - Y 0.4 i - k j - h fuv - nuv **Remove highly** 0.2 i - i 0.2 j-k u - g correlated features i - h h - k j - K . -h - k Z - Y fuv - nuv kcorrected y kcorrected_nuv kcorrected_u fuv - i nuv - k b' n ' × NUV ЪЧ н I. fuv -I. 1 kcorrected - un kcorrected nuv fu∨ **Feature Importance**

2 Dimensional Galaxy Manifold

2 Dimensional Galaxy Manifold

Comparison to SM-SFR Relation

3 Dimensional Galaxy Manifold

Implications of the Results

- The distribution in M_{NUV} M_Y can be explained intuitively by a SSP evolution
- Surprisingly, luminosities and not colors are the best discriminators
- Multimodalities and dispersions are effects of suboptimal projections

We should rethink how we classify galaxies. Maybe we should characterize the evolution in terms of a continuous parameter

Summary

- We demonstrated how machine learning methods can aid our understanding of galaxy evolution
 - Finding unobvious patterns in the multidimensional luminosity space
 - Determining the "Galaxy Manifold" and the best projection

Machine Learning algorithms have allowed us to do an unbiased study of galaxy evolution. *The results suggest we fundamentally rethink our galaxy studies*

Thanks!

Looking forward to the banquet!