Possibility of the formation of high-mass close binary systems by magnetic braking

Naoto Harada¹, Shingo Hirano¹, Masahiro Machida¹ & Takashi Hosokawa²

1 : Kyushu University, 2 : Kyoto University

Observations of High-Mass Close Binaries

but the mechanism of the formation of HMCB is unclear.

Expression of the separation

- Assume that eccentricity = 0.
- Equation of motion

$$m_{\rm p} \cdot (s - x) \cdot \omega^2 = G \frac{m_{\rm p} m_{\rm s}}{s^2}$$

 $m_{\rm s} \cdot x \cdot \omega^2 = G \frac{m_{\rm p} m_{\rm s}}{s^2}$

• Orbital angular momentum around the center of gravity

Difficulty of the formation of close systems

• Assume the equal mass binary (q = 1)

 $s = \frac{16}{G} \frac{J^2}{M_{tot}^3}$

→ Angular Momentum transfer is necessary to form close systems!

• How to transfer the angular momentum?

We paid attention to magnetic braking

during the collapse of a molecular cloud core.

Previous works on the formation of binaries

Overview of this work

We investigated the magnetic braking effect on the long-time evolution of the separation!

Methods : Outline of this work

Two sink thresholds $n_{sink} = 10^{10} cm^{-3}$, $r_{sink} \approx 21 au$

Simulation set up

Basic equation

$$\begin{cases} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = 0\\ \rho \left[\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} \right] \\ = -\nabla P - \rho \nabla \Phi - \frac{1}{\mu} \boldsymbol{B} \times (\nabla \times \boldsymbol{B}) \\ \frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) + \eta \nabla^2 \boldsymbol{B} \\ \nabla^2 \Phi = 4\pi G \rho \\ P = P(\rho) \end{cases}$$

 Initial condition **Critical Bonnor-Ebert sphere** $M_{cloud} = 100 [M_{\odot}]$ $n_{center} = 3.9 \times 10^4 \, [cm^{-3}]$ $\beta \equiv E_{rot}/E_{gra} = 0.02$ $\mu \equiv \frac{M/\phi}{(M/\phi)_{crit}} = \infty \text{ or } 3$ T = 10 [K] (isothermal) $n_{sink} = 10^{10} [cm^{-3}]$

• Simulation code

Nested Grid Code (Machida & Hosokawa 2013) Stellar evolution (Hosokawa+ 2011) We studied α , θ dependence of the separation evolution.

- $\alpha \equiv E_{th}/E_{gr}$
- = > Accretion rate is depend on α .
- $\theta \equiv$ Inclination b/t B₀ direction & rotation axis
- = > Efficiency of angular momentum transfer is depend on θ .

Assumption & Analytical model

Assumption

Binary system formed in sink region and $M_{tot} = M_{sink}, J_{tot} = J_{sink}$ M_{tot} : Binary's total mass, J_{tot} : Binary's total J

Calculate the separation

$$s = \frac{16}{G} \frac{J_{tot}^2}{M_{tot}^3}$$

Results: Time evolution of the separation

Formation of the Contact Binary

α dependence

Large $\alpha = >$ Close separation

← Angular momentum is more transferred because the collapse time became longer.

Non-Mag $\theta = 0^{\circ}$ $\theta = 45^{\circ}$ $\theta = 90^{\circ}$

Discussion: Why the separation fluctuated?

xz plane of α =0.6, θ =0° at M={1,3,5,10}

 $P_{Mag}/P_{ram} > 1 \dots P_{Mag} \equiv B^2/2\mu_0, P_{ram} \equiv \rho v^2$

The change of this configuration caused the separation fluctuations?

By MHD simulation + Analytical model, we investigated long-time evolution of the separation.

- Angular momentum transfer by magnetic braking is necessary to form high-mass close binaries!
- α dependence...

Larger α model evolved closer system.

- θ dependence...
 The relationship is reversed several times.
- Separation fluctuation It is caused by the change of $P_{Mag}/P_{ram} > 1$ region?

Appendix

Origins of Binary-BH, NS

LIGO-Virgo/ Frank Elavsky/ Northwestern University

High-Mass Close Binary can evolve to Binary-BH or NS.

Sink setting

Λ

- Set two thresholds, $n_{sink} \& r_{sink}$.
- Renew the sink parameters every step based on...

$$\begin{split} M_{\rm add} &= \int_{r < r_{\rm sink}} C_{\rm acc} \ \mu m_{\rm p} (n - n_{\rm sink}) \ {\rm dV} \\ \boldsymbol{J}_{\rm add} &= \int_{r < r_{\rm sink}} C_{\rm acc} \ \mu m_{\rm p} (n - n_{\rm sink}) \ \boldsymbol{r} \times \boldsymbol{v} \ {\rm dV} \\ \mathcal{I}_{\rm sink, new} &= M_{\rm sink, old} + M_{\rm add} \\ \boldsymbol{J}_{\rm sink, new} &= \boldsymbol{J}_{\rm sink, old} + \boldsymbol{J}_{\rm add} \end{split}$$

• In this work,
$$C_{acc} = 0.03$$
, $r_{sink} = \frac{1}{2}\lambda_J = \frac{1}{2}\sqrt{\frac{\pi}{G\mu m_p n_{sink}}}C_s$

Previous works on the formation of binaries

Mass-Time plot

Angular momentum-Mass plot

Mdot-Mass plot

Angular momentum transfer

θ dependence

Early stage : The larger θ is, the closer the separation is. Late stage : The relationship is reversed several times.