Formation of supermassive black holes at high-z

Kohei Inayoshi (稲吉恒平)

Kavli Institute for Astronomy and Astrophysics Peking University

初代星·初代銀河研究会@名大

初代星研究会と私

- 2010年3月(長崎大学) M1
- 2011年1月(愛媛大学)
- 2011年12月(九州大学)
- 2013年1月(北海道大学)
- 2014年1月(鹿児島大学)
- 2015年1月(東北大学)
- 2016年10月(金沢大学)

2018年2月(呉高専)

- M2 DCBH (UV/X-ray/CR)
- D1 DCBH (cold acc shock)
- D2 DCBH (pulsation instability)
- D3 DCBH (3D simulation)
- PD BH growth / DCBH
- PD BH growth / binary BH / GW
- PD BH growth
- 2019年11月(名古屋大学) 助教 BH growth / DCBH

*** review talk**

Thanks to all of your supports

Published in 2020 (will be on arXiv soon...)

Annu. Rev. Astron. Astrophys. 2019. 58:1–74

https://doi.org/10.1146/(please add article doi)

Copyright \bigodot 2019 by Annual Reviews. All rights reserved

The Assembly of the First Massive Black Holes

Kohei Inayoshi,¹ Eli Visbal,² and Zoltán Haiman³

¹Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China; email: inayoshi@pku.edu.cn

²Department of Physics & Astronomy, University of Toledo, Toledo, Ohio 43606; email: Elijah.Visbal@utoledo.edu

³Department of Astronomy, Columbia University, New York, NY 10027; email: zoltan@astro.columbia.edu

Keywords

black holes, cosmology, first galaxies, active galactic nuclei, quasars

Abstract

The existence of $\sim 10^9$ M_{\odot} supermassive black holes (SMBHs) within the first billion year of the universe has stimulated numerous ideas for the prompt formation and rapid growth of BHs in the early universe. Here we review ways in which the seeds of massive BHs may have first assembled, how they may have subsequently grown as massive as $\sim 10^9$ M_{\odot}, and how multi-messenger observations could distinguish between different SMBH assembly scenarios. We conclude the following:

Thanks to all of your supports

Special thanks to 大向さん & 細川さん !!

OK, let's start!

Cosmological QSO population

High-redshift monster BHs

Rapid SMBH assembly

Rapid SMBH assembly

Theory of early BH formation

SMBH formation (not only high-z) M.Rees (1984) ARA&A

- rapid gas accretion

- supermassive star formation
- dense clusters

massive black hole

Theory of early BH formation

Inayoshi, Visbal & Haiman (2020) ARA&A

Heavy BH Seeds

High-z star formation

Safranek-Shrader et al. (2016)

High-z star formation

- high mass / no fragments: $M_{\rm J} \sim \rho \lambda_{\rm J}^3 \propto \frac{c_{\rm s}^3}{\sqrt{\rho}}$ very high accretion rate: $\dot{M}_{\rm acc} \sim \frac{M_{\rm J}}{t_{\rm ff}} \sim \frac{c_{\rm s}^3}{G}$ $\propto T^{3/2}$

higher temperature is required

Ways to suppress H₂ formation

Lyman-Werner irradiation

baryonic streaming motion

 $H_2 + \gamma_{LW} \rightarrow 2 H$

 $v_{\rm eff}^2 \equiv c_s^2 + v_{\rm bsm}^2$

Bromm & Loeb 2003; Shang +2010; Latif +2013; Johnson +(2013); Regan +2014; Inayoshi +2014; Sugimura + 2014; Visbal +2015; Latif +2016; Chon+2016; Hirano+2018; Inayoshi+2018; Wise +2019; Luo+2019 etc...

Ways to suppress H₂ formation

Lyman-Werner irradiation

baryonic streaming motion

 $H_2 + \gamma_{LW} \rightarrow 2 H$

Combination of the two effects leads to H₂ suppression **further**...

Bromm & Loeb 2003; Shang +2010; Latif +201 + 2014; Visbal +2015; Latif +2016; Chon+2016 see Wenxiu's talk

Metal-free gas collapse phase

Metal-free gas collapse phase

No fragments / high Mdot!

gravitational collapse

accretion disk

pristine & H₂ free gas

- no/weak fragmentation
- high accretion rate

No fragments / high Mdot!

gravitational collapse

Clump migration is quick! unlikely to affect the central star (Inayoshi & Haiman 2014; Sakurai et al. 2015)

see Matsukoba-kun's talk

pristine & H₂ free gas

- no/weak fragmentation
- high accretion rate

No fragments / high Mdot!

gravitational collapse

pristine & H₂ free gas

no/weak fragmentation

high accretion rate

Rapidly accreting protostar

Rapid BH accretion

Super-Eddington accretion

• GR/Radiation/MHD simulations (Ohsuga+ 2009; Jiang+ 2014; Sadowski+ 2015)

Bondi accretion limit

M>>MEdd OK!

(gravity vs. radiation)

Bondi accretion limit

Bondi accretion limit

BH accretion in multi-scales

smaller scales: ~O(100)*R_{Sch} ~ 0.1-1 mpc $\int d_{g_0} d_{g$

standard disks Shakura & Sunyaev (1973) Slim disk Abramowicz et al. (1988)

cosmological simulations (e.g., Illustris, EAGLE, FIRE)

BH accretion in multi-scales

smaller scales: ~O(100)*R_{Sch} ~ 0.1-1 mpc $\int d_{gol} d_{g$

standard disks

Shakura & Sunyaev (1973)

Slim disk Abramowicz et al. (1988)

cosmological simulations (e.g., Illustris EAGLE, FIRE)

 $\dot{M} \gg \dot{M}_{\rm Edd}\,$ is possible !

at small scales

 $\dot{M} \simeq \min(\dot{M}_{\rm Edd}, \dot{M}_{\rm Bondi})$

without resolving R_B

BH accretion in multi-scales

smaller scales: ~O(100)*R_{Sch} ~ 0.1-1 mpc $\int d_{d} d_{d$

standard disks Shakura & Sunyaev (1973)

Slim disk Abramowicz et al. (1988)

cosmological simulations (e.g., Illustris, EAGLE, FIRE)

How can we connect the two different scales? Construct the global solution including R_B !

Gas supply from large scales

• low density case ($\dot{M}_{
m B,ini} \sim 10 \dot{M}_{
m Edd}$)

Ciotti & Ostriker (2001) Milosavljevic+ (2009) Park & Ricotti (2011, 2012)

Gas supply from large scales

- low density case ($\dot{M}_{\rm B,ini} \sim 10 \dot{M}_{\rm Edd}$)

Ciotti & Ostriker (2001) Milosavljevic+ (2009) Park & Ricotti (2011, 2012)

Rapid BH accretion in first galaxies

• high density case ($\dot{M}_{
m B,ini} \sim 500~\dot{M}_{
m Edd}$)

Rapid BH accretion in first galaxies

• high density case ($\dot{M}_{\rm B,ini} \sim 500~\dot{M}_{\rm Edd}$)

Global hyper-Eddington accretion

Global hyper-Eddington accretion

Conditions for rapid accretion

Hyper-Eddington conditions (R_{ion} < R_B)

$$\left(\frac{n_{\infty}}{10^5 \text{ cm}^{-3}}\right) \left(\frac{M_{\bullet}}{10^4 M_{\odot}}\right) \gtrsim \left(\frac{T_{\infty}}{10^4 \text{ K}}\right)^{3/2} \Longleftrightarrow \quad \dot{m} = \frac{M}{\dot{M}_{\text{Edd}}} \ge 500$$

Rapid growth of seed BHs

Rapid gas accretion is possible for BHs

Rapid growth of seed BHs

Rapid gas accretion is possible for BHs

Rapid growth of seed BHs

Rapid gas accretion is possible for BHs

Implications to observations

 $M_{BH} < 10^5 M_{sun}$

Implications to observations

M_{BH} < 10⁵M_{sun}

Overmassive BHs in high-z QSOs

Subsequent growth of BHs...

Efficient BH growth in rare regions? (> 3σ)

Summary

109-10

BH mass

MBH,0

heavy seeds ~10⁵M_{sun}

- LW radiation / streaming motion
- high accretion -> DCBHs

rapid growth (hyper-Eddington)

- photo-heating vs. recombination
- M
 _B/M
 _{Edd} > 500 is required
- overmassive BHs relative to galaxies

6-7

10-20

light seeds

redshift

KIAA / PKU

KIAA / PKU

The Kavli Institute for Astronomy and Astrophysics at Peking University 北京大学科维理天文与天体物理研究所

• KIAA fellowships (all fields)

https://jobregister.aas.org/ad/de436c12

- BHOLE postdoc researchers
 - (SMBH, galaxies and coevolution, high-z)

https://jobregister.aas.org/ad/930735dc

PKING postdoc researchers

(Gravitational Astrophysics, Interstellar Medium, Sky-Survey Science)

https://jobregister.aas.org/ad/0bb38802

Kavli Astrophysics Postdoctoral Fellowship (KIAA-IMPU)

https://jobregister.aas.org/ad/3cbd55c3

Thank you!