高赤方偏移銀河の金属量非一様性と初代星初期質量 関数への影響

Metallicity inhomogeneity inside high-z galaxies and its effects on Pop-III IMF

Yuta Tarumi (Tokyo University), in collaboration with

Tilman Hartwig and Mattis Magg

Stellar archaeology to IMF

- * Direct observation of Pop-III stars is quite difficult.
- * -> <u>Can we investigate indirectly?</u>

- * Pop-III properties (like IMF) affects...
 - * Metal yields
 - Radiation flux

* Using semi-analytical model, we search for pop-III IMF that best reproduces the observation.

What is semi-analytical model(SAM)?

- Simplified simulation of galaxy in each DM halo: FAST
- No resolution inside each halo
- $* \rightarrow$ Assume homogeneity

How inhomogeneous??

- The metallicity can differ
 by 5 orders of
 magnitude (!!!)
- Usually SAM assume homogeneity inside virial radius

How inhomogeneous??

- The metallicity can differ
 by 5 orders of
 magnitude (!!!)
- Usually SAM assume homogeneity inside virial radius

How inhomogeneous??

- The metallicity can differ
 by 5 orders of
 magnitude (!!!)
- Usually SAM assume homogeneity inside virial radius

What is semi-analytical model(SAM)?

- Simplified simulation of galaxy in each DM halo: FAST
- No resolution inside each halo
- $* \rightarrow$ Assume homogeneity

What is semi-analytical model(SAM)?

- * Simplified simulation of galaxy in each DM halo: **FAST**
- * No resolution inside each halo
- ⋆ → Assume homogeneity, or
 introduce a parameter to take
 inhomogeneity into account

Use cosmological simulation to calibrate this parameter!!

Motivation

- * I want to...
 - * predict [Fe/H] of stars in a halo, only by
 - total metal mass
 - total hydrogen mass

and obtain better prediction on Pop-III IMF through SAM calibration.

Method1: cosmological simulation

* Introduce a parameter "dZ" as:

$$Z \equiv \log_{10} \left[\frac{\text{(metal mass)}}{\text{(total mass)}} \right] - \log_{10}(0.02)$$

$$dZ = Z_{\text{dense}} - Z_{\text{all}}$$

Result1: correlation matrix

- * $dZ = Z_{dense} Z_{all}$ is correlated with:
 - * Zdense
 - * Zall
 - * <u>Mpop2</u>

dZ between d dZ!	pop3SNcount	halo mass -	pop3 stellar mass -	- ZdodM	o.14 - sseu seb	metallicity -	temperature - 10	stellar mean age	metallicity of dense gas -	mass of dense gas -	- Zp		-1.0
mass of dense gas	0.35	0.29	0.3	0.58	0.8	0.24	0.11	0.028	0.26	1	0.24		
metallicity of dense gas	0.31	0.12	0.45	0.5	0.16	0.9	0.063	0.31	1	0.26	0.93	_	-0.5
stellar mean age	0.33	0.25	0.53	0.36	0.048	0.3	-0.14	1	0.31	0.028	0.27		0 5
temperature	0.083	0.049	0.091	0.18	0.14	0.11	1	-0.14	0.063	0.11	0.013		
metallicity	0.34	0.15	0.47	0.5	0.16	1	0.11	0.3	0.9	0.24	0.67	-	0.0
gas mass ⁻	0.41	0.62	0.35	0.57	1	0.16	0.14	0.048	0.16	0.8	0.14		
Mpop2	0.52	0.38	0.65	1	0.57	0.5	0.18	0.36	0.5	0.58	0.41		0.5
pop3 stellar mass	0.72	0.42	1	0.65	0.35	0.47	0.091	0.53	0.45	0.3	0.36		05
halo mass	0.43	1	0.42	0.38	0.62	0.15	0.049	0.25	0.12	0.29	0.072		
pop3SNcount	1	0.43	0.72	0.52	0.41	0.34	0.083	0.33	0.31	0.35	0.23		1.0

There's something between stellar mass and dZ!

- dZ distribution is different between internal and external enrichment.
- * In internal enrichment, dZ distributes around 0: well mixed
- In external enrichment, dZ is mostly negative, and the absolute value can be quite large (~ -5 or more)

- dZ distribution is different between internal and external enrichment.
- * In internal enrichment, dZ distributes around 0: well mixed
- In external enrichment, dZ is mostly negative, and the absolute value can be quite large (~ -5 or more)

- * In external enriched haloes, typically dZ ~ -1
- * Previous works assume good dZ distribution for internal enrichment.

- * Why the externally enriched halos have negative dZ?
 - * Pristine gas collapse happens earlier, and then enrichment wind cannot penetrate into the cloud.

Method2: the semi-analytical model

* SAM has many parameters.

Parameter	Value
Pop III SFE fraction of faint SNe metal fallback fraction metal ejection fraction lower IMF limit upper IMF limit	$\eta_{\text{III}} = 10^{-1} \sim 10^{-6}$ $f_{\text{faint}} = 0.0 \sim 1.0$ $f_{\text{fallback}} = 0\% \sim 100\%$ $f_{\text{eject}} = 100\% \sim 0\%$ $M_{\text{min}} = 1 \sim 10M_{\odot}$ $M_{\text{max}} = 100 \sim 1000M_{\odot}$
IMF slope α	$1.0(\text{flat}) \sim -1.35(\text{Salpeter})$

- * SAM is mainly calibrated by:
 - * the SMHM relation $M_*(M_{halo})$

(to Renaissance, abundance matching) Behroozi+13, Garrison-Kimmel+14

- Internal enrichment fraction
- metallicity distribution function

(to Renaissance)

(to observation)

Result2: MDF and IMF

* Overall MDF looks similar.

[Fe/H] distribution function

Result2: MDF and IMF

* Overall MDF looks similar.

[Fe/H] distribution function

IMF comparison

Result2: The effects of dZ

- Increase # of stars in
 -5 < [Fe/H] < -4.
- Stars with [Fe/H] < -5 are mostly from external enrichment.
- However, the effect on IMF seems small:
 IMF prediction is not much affected by the inhomogeneity.

Summary

- * (high-z) galaxy is inhomogeneous. The inhomogeneity is prominent in externally enriched halos. Dense gas is metal-poor, because metal-rich wind cannot penetrate into gas cloud.
- We may observe [Fe/H] < -4 stars more often than previously we have imagined.
- metallicity inhomogeneity only plays a minor role on MDF and consequently on IMF.

Introduction

Importance of mixing

https://www.ipmu.jp/ja/20190524-FirstStars

 Mixing connects source event and current observations.

Method2: Star formation in the SAM

- Initially halos are "pristine".
- * If each halo satisfies all the criteria, it forms PopIII/II stars and enrich the halo. PopIII criteria:
- star formation can also enrich neighboring halos

- The halo is massive enough
- The halo is pristine
- The Lyman-Werner feedback is not too strong

PopII criteria:

- The halo is massive enough
- The halo contains enough coolants

metal dilution in high-z galaxies

CEMP fraction

Method1: cosmological simulation

* "Renaissance simulation": Large volume, Good resolution

https://rensimlab.github.io/showcase.html

