宇宙論的観測で探る再電離

The history of baryonic component around the Epoch of Reionization

TASHIRO, Hiroyuki (Nagoya Univ.)

初代星•初代銀河研究会2019@名古屋大

From Nature (Ncik Spenser)

Observational constraints on the EoR

Several things we have learnt from the observations on the EoR

- CMB anisotropies
- Gunn-Peterson Troughs (high-z QSOs)
- High redshift galaxies (LAE)
- Gamma ray background

etc.

Observational constraints on the EoR

Several things we have learnt from the observations on the EoR

- CMB anisotropies probe electrons
- Gunn-Peterson Troughs (high-z QSOs)
- High redshift galaxies (LAE)
- Gamma ray bursts probe neutral hydrogen

etc.

CMB anisotropy

Base- ΛCDM cosmological parameters $(\Omega_b h^2, \ \Omega_c h^2, \ \theta_*, \ \overline{\tau}, \ln(10^{10} A_s), \ n_s)$

au :Thomson scattering optical depth to reionization $au = \sigma_T \int_{t_0}^{t_{\max}} cdt \; x_e(t) n_{\mathrm{H}}(t)$ Impact of reionization on CMB anisotropies

Increase free electron density

Enhance the rate of scatterings (large τ)

- Scatterings suppress the anisotropic signals
- Scatterings make a bump on the CMB polarization

Reionization from CMB anisotropy

Observational constraints on the EoR

Several things we have learnt from the observations on the EoR

- CMB anisotropies
- Gunn-Peterson Trough (high-z QSOs)
- High redshift galaxies (LAE)
- Gamma ray bursts probe neutral hydrogen

etc.

Gunn-Peterson Trough

Complete absorption by neutral hydrogen along the line of sight on distant QSO spectrum

Measurements give the neutral fraction of hydrogen

Gunn-Peterson Trough

Gunn-Peterson trough measurement by SDSS QSO survey

Neutral fraction evolution between z=5 to 6.4

Fan et al. 2006

Fan et al. 2006

Observational constraints on the EoR

Several things we have learnt from the observations on the EoR

- CMB anisotropies
- Gunn-Peterson Trough (high-z QSOs)
- High redshift galaxies (LAE)
- Gamma ray bursts probe neutral hydrogen

etc.

Neutral fraction evolution

Neutral fraction evolution

Neutral fraction evolution

First stars, galaxies, QSOs in the early Universe

CMB: 2.725 Blackbody spectrum

Standard Big Bang model

 $T(z) = T_0(1+z), \quad T_0 = 2.725 \mathrm{K}$

Baryon temperature evolution

 n_{tot} : Total number of "baryonic particles" (including electrons)

Adiabatic evolution

$$\frac{dT}{dt} = -2HT \quad \square \qquad T \propto (1+z)^2$$

Deviation from the adiabatic evolution tells us heating and cooling sources in the Universe

Baryon temperature evolution

$$\frac{dT}{dt} = -2HT - \frac{T}{n_{\text{tot}}}\frac{dn_{\text{tot}}}{dt} + \frac{2}{3k_B n_{\text{tot}}}\frac{dQ}{dt}$$

 n_{tot} : Total number of "baryonic particles" (including electrons)

$$\frac{dQ}{dt} = C_{\rm Comp}(T_{\gamma} - T) + \left. \frac{dQ}{dt} \right|_{\rm heat} + \left. \frac{dQ}{dt} \right|_{\rm cool}$$

Baryon temperature evolution

$$\frac{dT}{dt} = -2HT - \frac{T}{n_{\text{tot}}}\frac{dn_{\text{tot}}}{dt} + \frac{2}{3k_B n_{\text{tot}}}\frac{dQ}{dt}$$

 n_{tot} : Total number of "baryonic particles" (including electrons)

$$\frac{dQ}{dt} = C_{\rm Comp}(T_{\gamma} - T) + \frac{dQ}{dt}\Big|_{\rm heat} + \frac{dQ}{dt}\Big|_{\rm cool}$$
Effective Compton scattering $r_{\rm b} = T_{\gamma}$

Baryon temperature evolution

$$\frac{dT}{dt} = -2HT - \frac{T}{n_{\text{tot}}}\frac{dn_{\text{tot}}}{dt} + \frac{2}{3k_B n_{\text{tot}}}\frac{dQ}{dt}$$
$$\frac{dQ}{dt} = C_{\text{Comp}}(T_{\gamma} - T) + \frac{dQ}{dt}\Big|_{\text{heat}} + \frac{dQ}{dt}\Big|_{\text{cool}}$$

Reionization

First stars, galaxies, QSOs

IGM gas temperature evolution in lower redshifts

Width of Lyman- α feature provides the IGM temperature

IGM gas temperature evolution in lower redshifts

Width of Lyman- α feature provides the IGM temperature

An absorption profile centred at 78 megahertz in the sky-averaged spectrum

Judd D. Bowman 🏁, Alan E. E. Rogers, Raul A. Monsalve, Thomas J. Mozdzen & Nivedita Mahesh

Nature **555**, 67–70 (01 March 2018) doi:10.1038/nature25792 Download Citation Received: 13 September 2017 Accepted: 24 January 2018 Published online: 28 February 2018

1. a low-band instrument sensitive to 50-100 MHz.

2. a high-band instrument sensitive to 100-200 MHz,

The EDGES team reported the detection of 21cm absorption signals from redshifts around 17

EDGES anomaly

EDGES result

$$\frac{T_{\gamma}}{T_s} \approx \frac{T_{\gamma}}{T_K} \sim 15$$

Standard cosmological model (at most)

$$\frac{T_{\gamma}}{T_K} \sim 7$$

The hyperfine structure of neutral hydrogen atom

At the transition of these levels, 21 cm photon is emitted or absorbed.

Cosmological 21cm signal

Signal depends on hydrogen gas state

Differential Brightness temperature

$$\delta T_b(z) \approx 28 x_{\rm HI} (1+\delta) \left(1 - \frac{T_{\gamma}(z)}{T_s(z)} \right) \left(\frac{1+z}{10} \frac{0.15}{\Omega_m h^2} \right)^{1/2} \left(\frac{\Omega_b h^2}{0.025} \right) \ [\rm mK]$$

the population ratio between the excitation and ground states

$$\frac{n_1}{n_0} \equiv \left(\frac{g_1}{g_0}\right) \exp\left(-\frac{E_\star}{k_B T_s}\right).$$
 Spin temperature

In the hyperfine structure \mathcal{L}

$$g_1 = 3, g_0 = 1$$

$$E_{\star} = k_B T_{\star}, \quad T_{\star} = 0.0681 \mathrm{K}$$

21 cm transition in cosmology

- Spontaneous emission
- Transition induced by CMB absorption and stimulated emission
- Transition induced by collisions
- Lyman alpha pumping

Hyper fine structure

Assuming the equilibrium balance of these effects, Level population :

 $n_1 \left(C_{10} + P_{10} + A_{10} + B_{10} I_{\rm CMB} \right) = n_0 \left(C_{01} + P_{01} + B_{01} I_{\rm CMB} \right)$

Spin temperature

$$T_s = \frac{T_{\gamma} + (y_{\alpha} + y_c)T_K}{1 + y_{\alpha} + y_c}$$
(Fi

(Field 1975)

Spin temperature is determined by the balance between gas and CMB temperature

Collision and Ly-a are not effective : $\ y_c \ll 1, \ y_lpha \ll 1$ $T_s \sim T_\gamma$

Collision or Ly-a is effective: $y_c \gg 1$, or $y_\alpha \gg 1$

 $T_s \sim T_{\rm K}$

21 cm Tomography

• Line absorption (emission)

 $\nu_{\rm obs} = 1440 \ {\rm MHz}/(1+z)$

Differential Brightness temperature

$$\delta T_b(z) \approx 28 x_{\rm HI} (1+\delta) \left(1 - \frac{T_{\gamma}(z)}{T_s(z)} \right) \left(\frac{1+z}{10} \frac{0.15}{\Omega_m h^2} \right)^{1/2} \left(\frac{\Omega_b h^2}{0.025} \right) \ [\rm mK]$$

the population ratio between the excitation and ground states

$$\frac{n_1}{n_0} \equiv \left(\frac{g_1}{g_0}\right) \exp\left(-\frac{E_\star}{k_B T_s}\right).$$
 Spin temperature

In the hyperfine structure \mathcal{L}

$$g_1 = 3, g_0 = 1$$

$$E_{\star} = k_B T_{\star}, \quad T_{\star} = 0.0681 \mathrm{K}$$

Global Spin temperature

$$T_s = \frac{T_\gamma + (y_\alpha + y_c)T_K}{1 + y_\alpha + y_c}$$

Global Spin temperature

Global 21cm signal

10³

Global 21cm signal

Pritchard & Loeb 2012

*****=

Experiment to Detect the Global EoR Signature (EDGES)

It seems that the spin temperature strongly couples with the gas temperature by Ly-a

EDGES anomaly

$$\delta T_b(\nu) \approx 28 x_{\rm HI} \left(1 - \frac{T_{\gamma}(z)}{T_s(z)} \right) \left(\frac{1+z}{10} \frac{0.15}{\Omega_m h^2} \right)^{1/2} \left(\frac{\Omega_b h^2}{0.025} \right) \, [mK]$$

Baryon gas is cooler than in the standard cosmological model?

DM-Baryon interaction can cool the baryon temperature

$$\frac{dQ}{dt} = C_{\rm b-d}(T_{\rm d} - T)$$

Baryon-Dark matter coupling

• Redshifted 21cm signal

HT et al. 2014, Brkana 2019...

Small-scale power spectrum

Dvorkin et al. 2014, Ooba, HT et al. 2019

• First star formation

Hirano & Bromm 2018

• Dark matter halo profile

Kadota, HT et al. 2016

EDGES results

Need to be confirmed by other experiments !

SARAS

LEDA

Sci-Hi

Global 21 cm Science Absorption line signature $(T_{gas} < T_{\gamma})$ Ly- α photon production

- DM-Baryon coupling
- Primordial black holes

(Clark et al. 2018, Hecktor et al. 2018)

Primordial magnetic fields

- Decaying / annihilating dark matter
- Structure formation in the early universe

(Clark et al. 2018)

(Yoshiura et al. 2018)

Aae of the Universe (Myr)

⁽Minoda, HT et al. 2019)

Primordial magnetic fields

Seed magnetic fields of magnetic fields in galaxy and galaxy clusters?

Additional heat source for the IGM gas

$$\frac{dQ}{dt}\Big|_{\text{heat}} = \frac{|(\nabla \times \mathbf{B}) \times \mathbf{B}|^2}{16\pi^2 \xi \rho_{\text{b}}^2} \frac{1 - x_{\text{e}}}{x_{\text{e}}}$$

Primordial magnetic fields

Seed magnetic fields of magnetic fields in galaxy and galaxy clusters?

Additional heat source for the IGM gas

$$\frac{dQ}{dt}\Big|_{\text{heat}} = \frac{|(\nabla \times \mathbf{B}) \times \mathbf{B}|^2}{16\pi^2 \xi \rho_{\text{b}}^2} \frac{1 - x_{\text{e}}}{x_{\text{e}}}$$

Global 21 cm signal can provide constraints on the heating sources during the EoR

Reionization

First stars, First galaxies, QSO, etc.

- Ionization fraction evolution
- Thermal history

Global 21 cm signal measurement

• First result from EDGES experiment

21 cm fluctuation measurement

Signal image : First stars, galaxies, QSOs, SNe

Abe-san's talk

Statistical analysis : first star statistical property Tanaka-san's talk

application to cosmology

• Initial density fluctuations

Furugori-san's talk

SKA(Squqre Kilometer Array)

In the 2020's

